
Denotational Programming Strategies for Systematic Program
Construction

Noel Welsh
noel@inner-product.com

Inner Product LLC
Seattle, WA, USA

ABSTRACT
We present denotational programming strategies blah blah blah

CCS CONCEPTS
• Social and professional topics→ Computational thinking;
Computer science education; Informal education; Adult education;
• Software and its engineering → Semantics.

KEYWORDS
computational thinking, denotational semantics, programming strate-
gies, design patterns
ACM Reference Format:
NoelWelsh. 2019. Denotational Programming Strategies for Systematic Pro-
gramConstruction. In Proceedings of ACMConference (Conference’17).ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
In our experience learning and teaching programming we’ve seen
a consistent problem: students don’t understand how language fea-
tures are connected to solving problems. For the last decade we
have been refining our techniques for teaching Scala, to a wide va-
riety of students, and our curriculum has evolved to focus on pro-
gramming strategies. A programming strategy captures a reusable
building block of a program or the programming process. Program-
mingwith programming strategies gives students a systematic and
repeatable process for writing code.

In this paper we present a a particular kind of programming
strategy, which we call denotational programming strategies. These
strategies draw on two ideas: the first is the relative efficiency of
declarative knowldedge compared to procedural knowledge, and
the second is the idea that programs and the programming process
both consist of few reusable components.

Cognitive psychology distinguishes between procedural knowl-
edge and declarative knowledge. Procedural knowledgemeans knowl-
edge of how things work; the specific steps required to carry out
a task. Declarative knowledge is knowledge of what something is
or why something is the way it is. We see a similar distinction in
programming language semantics, which differentiates between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/10.1145/1122445.1122456

operational semantics (see, for example, [3]) and denotational se-
mantics [9]. In an operational semantics the meaning of a program
is explained in terms of the steps carried out by some abstract ma-
chine. In contrast an operational semantics gives meaning by relat-
ing program terms to mathematical constructs which we assume
we already understand.

A short example may help illustrate the difference. Consider ex-
plaining the following Scala program.

def fibonacci(n: Int): Int =

n match {

case 0 => 1

case 1 => 1

case _ =>

fibonacci(n−1) + fibonacci(n−2)
}

To explain this program in an operational way we might use an
abstract machine with a stack 1 and explain recursion in terms of
operations on the stack. To explain this code in a denotational way
we can simply say the program fibonacci(n) corresponds to the
nth Fibonacci number, assuming we already know the Fibonacci
numbers.

As the example above shows, denotational or declarative knowl-
edge can be much more compact than operational knowledge. It
can be advantageous when learning as it abstracts a lot of complex-
ity, such as stack manipulation in the case of recursion. We don’t
undervalue operational or proecdural knowledge; we believe that
programmers should be able to explain programs in terms of some
abstract machine. However we believe students can make faster
progress if they are first introduced to programming in a denota-
tional manner, with operational knowledge filled in once they are
comfortable with the basic tasks of programming.

This brings us to our second idea, which is that a large part of
programs themselves, and the process for constructing them, are
made from reusable building blocks. We call these building blocks
programming strategies. This idea is not new to us, and we discuss
related work in Section 4. What is new are the strategies them-
selves, and our approach to teaching that gives these strategies a
central role.

In our teaching we have identified ten strategies. We call three
of them denotational strategies. This is for two reasons. The first
is that these strategies are the inverse of denotational semantics.
In denotational semantics we map programs to mathematical ob-
jects. In our denotational strategieswe do the reverse: we start with
some mathematical object we wish to realise, and then create the
1This kind of machine is commonly used in teaching programming, but not often in
operational semantics. We use this example as we expect it will be familiar to our
readers.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Conference’17, July 2017, Washington, DC, USA Noel Welsh

code that corresponds to it. The second reason is that these strate-
gies embody denotational or declarative knowledge. The student
does not need an operational understanding to write correct code
when using a denotational strategy.

2 DENOTATIONAL PROGRAMMING
STRATEGIES

In this section we describe our three denotational programming
strategies.Themajority of our students do not have a strongmathe-
matical background so we do not emphasise this connection when
teaching the strategies. However we do use functional program-
ming jargon, such as “sum types”, as our students may encounter
these terms when talking to other functional programmers.

For each strategy we give:
• a condition that describes when the strategy is applicable;
• a description of the strategy and its use;
• an example of the strategy in use; and
• any notes that we feel are relevant.

We use the Scala programming language [8] to present our strate-
gies. This is the language we teach, but the strategies are not re-
stricted to Scala. They are often more compact in other functional
programming languages, such as Haskell [7] or OCaml [6]. While
our strategies can be used in object-oriented languages, such as
Python or Java, in most cases they lack language and compiler sup-
port that makes them more difficult to use correctly.

2.1 Algebraic Data Types
Condition. Whenever data can be described using logical ors or

logical ands it should be defined using an algebraic data type.

Description. Algebraic data types are our main way of defining
data. If the data description meets the conditions for this strategy
the code that defines the data follows immediately.

Algebraic data types consist of two sub-strategies, that for logi-
cal ors, also called sum types, and that for logical ands, also called
product types.

For a sum type, if A is a B or C then we can immediately write
the corresponding Scala

sealed trait A

final case class B() extends A

final case class C() extends A

For a product type, if A is a B and C then we can immediately
write the corresponding Scala

final case class A(b: B, c: C)

Example. For our example we’ll take the classic functional pro-
gramming data structure the singly-linked list. For simplicity our
list will hold only Ints.

The data description is: a List is either Empty or a Pair. A Pair
has a head which is an Int, and a tail which is a List.

From this description we can immediately write the complete
data definition, though here we take it step-by-step. The first part,
“a List is either Empty or a Pair” is a logical or (a sum type). We
can use the corresponding pattern to immediately write

sealed trait List

final case class Pair() extends List

final case class Empty() extends List

The second part, “a Pair has a head which is an Int, and a tail
which is a List” is a logical and (a product type). Using the corre-
sponding pattern we can complete the definition

sealed trait List

final case class Pair(head: Int , tail: List) extends List

final case class Empty() extends List

Notes. Scala does not support algebraic data types directly, un-
like many other functional programming languages. Instead they
are constructed using sealed traits and final case classes
as show in the description and examples.There are some subtleties
in encoding algebraic data types in Scala. For example we might
use a final case object instead of a final case class if our
type holds no data. We do not got into these here as they are not
of interest to non-Scala programmers. Direct syntax for algebraic
data types is slated for the next of version of Scala, known as Dotty
[1], which will solve these issues.

In mathematics we usually do not name fields in a product type.
This is also the case in languages such as Haskell and O’Caml. In
Scala we must always name the fields of a type.

2.2 Structural Recursion
Condition. Whenever we want to transform an algebraic data

type we can do this using structural recursion.

Description. Structural recursion provide a generic skeleton for
transforming any algebraic data type. Where algebraic data types
build data, structural recursion takes data apart (and possibly builds
a new data structure). Unlike the algebraic data type strategy, the
code given by the structural recursion strategy is not complete;
there is a problem specific component that the programmer must
complete.

Structural recursion has two components, one for sum types and
one for product types (recall these are the two components of al-
gebraic data types). In Scala there

For a sum type, if A is a B or C then we can immediately write
the corresponding skeleton

anA match {

case B() => ???

case C() => ???

}

The ??? indicates code that we must complete with a problem-
specific implementation.

For a product type, if A is a B and C then we can immediately
write the corresponding Scala

anA match {

case A(b, c) => ???

}

In either case, if the data is recursive then the there is a cor-
responding recursion on the right-hand side of the =>. This will
become clearer in the example.

Denotational Programming Strategies Conference’17, July 2017, Washington, DC, USA

Example. For our example we will use the List data type we
declared earlier, and implement a method to sum the elements of
a List.

We start by writing the method header. This is not part of the
strategy but rather basic Scala knowledge we assume the student
has at this point.

def sum(list: List): Int =

???

The first step is to realise that List is an algebraic data type and
therefore the structural recursion strategy can be used. From the
structure of List we can write

def sum(list: List): Int =

list match {

case Pair(hd , tl) => ???

case Empty () => ???

}

Finally, we note that Pair is recursive (specifically, the tail is).
This tells us that somewhere on the right-hand side we need to
recurse on the tail.

def sum(list: List): Int =

list match {

case Pair(hd , tl) => ??? sum(tl)

case Empty () => ???

}

We have now gone as far as the structural recursion strategy
will take us. To complete the method we can use another strategy,
which we call following the types, but it’s not a denotational strat-
egy and hence out of scope for this paper. We give the complete
code here for reference.

def sum(list: List): Int =

list match {

case Pair(hd , tl) => hd + sum(tl)

case Empty () => 0

}

Notes. There are two important teaching pointswhen using struc-
tural recursion.Thefirst is thatwe don’t need to think about recursion—
the recursion is given to us by the strategy. So long as we get the
individual cases correct the strategy guarantees the correctness of
the method. The second point is to focus just on those individual
cases, which in the examples above are a base case and a recursive
case. The base case usually has a straighforward solution (zero is
the sum of an empty list). For the recursive case we must remem-
ber that we don’t need to think about the recursion. We can just
assume it’s correct, so in the example above we can assume we
have the sum of the tail and then the final solution is to add the
head to that value.

In Scala we can implement structural recursion using pattern
matching or polymorphism. We have only illustrated the pattern
matching approach here, as it’s more common in other functional
programming languages.

2.3 Generic Types
Condition. When we have no information about some data or,

alternatively, we want code to work with all data, we should rep-
resent that data with a generic type.

Description. In some situations we will want our code to work
with any data type. For example, if we’re creating a container, such
as List above, we usuallywant it to store any type the user chooses.
An alternative way of phrasing this is to say we have no informa-
tion, at the time we’re creating the code, of the data type that will
be used.

There are two components to a generic type: the declaration and
the use.The declaration is given with square brackets. For example,
[A] declares a generic type called A. Such a declaration can occur
either immediately after the class name in a class declaration or
immediately after the method name in a method declaration:

class ExampleClass[A] {

def exampleMethod[B] = { }

}

If a generic type is declared on a class it is in scope for any
constructor parameters and the body of that class. Likewise for
a method its scope is the method parameters and body.

Once a generic type has been declared, and is in scope, it can be
used like any other type. Here’s an example of defining the identity
method: the method that returns whatever is passed to it.

def identity[A](a: A): A = a

Generic types are analogous to method parameters, which we
must also first declare before we can use. For this reason generic
types are also known as type parameters. There is also a similarity
to construwhen extending a class that defines a generic type. In
this case we must pass some type, either concrete or generic, for
this generic type, similarly to how we must pass parameters to a
method.

class ClassOne[A]

class ClassTwo[A] extends ClassOne[A]

Example. For our example we will extend the List example to
store any data type the user specifies.The typewill be used through-
out the class, so it is scoped to the class declaration.

First we declare the generic type.
sealed trait List[A]

Now we must pass a type to this type parameter in the sub-
classes. Our final code is

sealed trait List[A]

final case class Pair[A]() extends List[A]

final case class Empty[A]() extends List[A]

Notes. The use of generic types (or, parametric polymorphism
to use FP terminology) is familiar in containers. There are other
situations where it is less familiar, and that is where this strategy
is particularly useful. For example, we sometimes use a case study
where we ask students to create logging infrastructure. A bit of re-
flection shows that we have no real knowledge of what the user
wants to log, and hence a generic type is appropriate here. We find

Conference’17, July 2017, Washington, DC, USA Noel Welsh

students from an OO background often reach for an interface in-
stead, and create complicated designs as they try to encompass
every possible use case.

Explaining the language machinery to use generic types is quite
a bit more complicated than the core concept. We have skipped dis-
cussion of co- and contravariance, which increase both conceptual
and implementation complexity.

3 EXTENDED EXAMPLE
In this section we give an extended example of the programming
strategies.

4 RELATEDWORK AND DISCUSSION
Our programming strategies are most similar to, and were inspired
by, the design recipes described in How to Design Programs [2].

A more distant inspiration are design patterns [4]. Our denota-
tional programming strategies differ from design patterns in the
precision of the definition. Design patterns are informally defined.
Our strategies are based on an underlying mathematical model.

Programmings strategies have been the subject of other research
…

Design patterns have little active research, perhaps becausemore
modern languages have subsumed them as language features (see,
for example, [5]).Will the same happen to our programming strate-
gies? One argument is that programming strategies representways
of thinking about code, independent of implementation, and have
utility even in languages that directly support them. However this
same argument could be applied to design patterns. We believe
our strategies will be more durable as they encode basic concepts
of first order logic (logical and and logical ors for algebraic data
types, and universal quantification for generic types).

Are more believable answer is that our strategies apply to func-
tional programming, and functional programming is programming
paradigm the industry is currently shifting towards.

5 CITATIONS AND BIBLIOGRAPHIES
REFERENCES
[1] Nada Amin, Karl Samuel Grütter, Martin Odersky, Tiark Rompf, Sandro Stucki,

Lindley, and Sam. 2016. The Essence of Dependent Object Types. In A List of
Successes That Can Change the World: Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday, Sam Lindley, Conor McBride, Phil Trinder, and Don
Sannella (Eds.). Springer International Publishing, Switzerland, 249–272. https:
//doi.org/10.1007/978-3-319-30936-1_14

[2] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2014. How to Design Programs, Second Edition. MIT Press, Cambridge,
MA.

[3] Matthias Felleisen and Robert Hieb. 1992. The revised report of the syntactic
theories of sequential control and state. Theoretical Computer Science 103, 2 (1992),
235–271.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston,
MA.

[5] Joseph Gil and David H. Lorenz. 1997. Design Patterns vs. Language Design. Tech-
nical Report LPCR9703. Department of Computer Science, Technion—Israel Insti-
tute of Technology, Haifa, Israel.

[6] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and
Jérôme Vouillon. 2019. The OCaml system release 4.08. http://caml.inria.fr/
distrib/ocaml-4.08/ocaml-4.08-refman.pdf

[7] Simon Marlow. 2010. Haskell 2010 Language Report. https://www.haskell.org/
definition/haskell2010.pdf

[8] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubo-
chet, Burak Emir, Sean McDirmid, Stéphane Micheloud, Nikolay Mihaylov,
Michel Schinz, Lex Spoon, Erik Stenman, andMatthias Zenger. 2006. An Overview

of the Scala Programming Language (2. Edition). Technical Report 85634. School
of Computer and Communication Sciences, École polytechnique fédérale de Lau-
sanne. http://infoscience.epfl.ch/record/85634

[9] Dana S. Scott. 1972. Continuous Lattices. In Toposes, Algebraic Geometry and
Logic, F. W. Lawvere (Ed.). Lecture Notes in Mathematics, Vol. 274. Springer Ver-
lag, Berlin, Heidelberg, 97–136.

ACKNOWLEDGMENTS
Acknowledgement redacted to avoid identifying information

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
http://caml.inria.fr/distrib/ocaml-4.08/ocaml-4.08-refman.pdf
http://caml.inria.fr/distrib/ocaml-4.08/ocaml-4.08-refman.pdf
https://www.haskell.org/definition/haskell2010.pdf
https://www.haskell.org/definition/haskell2010.pdf
http://infoscience.epfl.ch/record/85634

	Abstract
	1 Introduction
	2 Denotational Programming Strategies
	2.1 Algebraic Data Types
	2.2 Structural Recursion
	2.3 Generic Types

	3 Extended Example
	4 Related Work and Discussion
	5 Citations and Bibliographies
	References
	Acknowledgments

